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ABSTRACT 

Smart contracts, which are self executing contracts with the terms of the agreement 

between buyer and seller being directly written into lines of code, have the 

potential to revolutionize many industries by automating complex processes and 

reducing the need for intermediaries. However, the immutability of smart contracts 

also means that vulnerabilities cannot be easily fixed once they are deployed, 

making it crucial to detect and prevent vulnerabilities before deployment. In this 

project, we focus on the problem of vulnerability detection in smart contracts, 

specifically the reentrancy vulnerability, which allows an attacker to repeatedly call 

an external contract in a malicious manner. To address this problem, we introduce 

four-layer convolutional neural network (CNN) for reentrancy vulnerability 

scanning. We compare our method to other vulnerability scanning tools which are 

using machine learning approaches, including long short-term memory (LSTM) and 

graph neural network (GNN), and show that our method outperforms on dataset of 

real-world smart contracts. Our results demonstrate the effectiveness of using deep 

learning for vulnerability detection in smart contracts and provide a promising 

direction for further research in this area. 
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      CHAPTER 1 

CHAPTER 

INTRODUCTION 

Until Satoshi Nakamoto introduced Bitcoin in 2009, digital currencies were used in a 

centralized manner. (Nakamoto 2008) He developed a decentralized electronic cash 

system using cryptographic functions in a clever way. After Bitcoin gained 

increasing popularity, other cryptocurrencies began to be developed by enthusiasts. 

Ethereum was one of them and today it is the second most popular blockchain 

platform, after Bitcoin. (Shen et al. 2018) The Ethereum platform gained popularity 

through the use of smart contracts, which are computer programs running on the 

blockchain. Smart contracts contain automatically executing scripts that trigger 

certain actions or results when the terms of the contract are met. (Röscheisen et al. 

1998) They have a non-reversible or changeable structure once they are uploaded to 

the blockchain. Since anyone can write and upload smart contracts through the 

Ethereum network, vulnerabilities can occur when amateur programmers write them. 

This makes smart contracts vulnerable to exploitation by malicious people. When a 

malicious actor discovers a backdoor in the code, they can abuse the smart contract 

and take advantage of the opportunity to withdraw people's money from the contract. 

As a result, smart contract programmers and the blockchain security community have 

started seeking solutions to prevent these exploitations. Since smart contracts cannot 

be changed after they are uploaded, vulnerabilities must be addressed before they are 

put on the blockchain. Therefore, vulnerable statements in the code must be carefully 

examined during the development phase. Some well-known methodologies, such as 

automated software testing (fuzzing), have been applied to smart contracts for this 

purpose. (Jiang et al. ,2018) Static and dynamic analysis tools have been developed 

to efficiently find bugs in smart contracts. However, in some cases, these tools do not 
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provide the expected high accuracy results in vulnerability testing. In order detect to 

tricky vulnerabilities that cannot be detected using tools and increase accuracy, more 

advanced methods need to be used. Machine learning techniques have been used in 

software vulnerability detection since the early 2000s. (Chernis et al. ,2018) Because 

smart contracts are also a small size of software, the use of machine learning 

methods in vulnerability detection for them has become prominent in this area. Many 

different types of ML methods, such as Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), and Graph 

Neural Network (GNN), have been used to scan smart contract code for 

vulnerabilities. Vulnerabilities in smart contracts are also divided into different 

categories. The Decentralized Application Security Project (DASP), a recognized 

organization in blockchain security, has created a Top 10 list of the most risky and 

common smart contract code vulnerabilities. (Forbes Business Council, 2022) 

According to the DASP list, an attack called reentrancy is the top vulnerability on the 

current Top 10 list for 2018. (Forbes Business Council, 2022) In fact, one of the most 

impactful attacks on the Ethereum DAO, which resulted in a 60 million dollar loss, 

was conducted by exploiting a reentrancy bug. (Alchemy,2008) Since the reentrancy 

bug is more common and causes more harm than any other vulnerabilities, we focus 

on detecting reentrancy bugs in smart contracts in this work. After evaluating the 

advantages and disadvantages of deep learning models, we decided to use a 

Convolutional Neural Network (CNN) for vulnerability detection purposes. To train 

our model, we downloaded open-source contracts labeled as having or not having a 

reentrancy bug. We used the Word2vec technique as a Natural Language Processing 

(NLP) model to feed our neural network with code statements. In this paper, we 

provide information about two distinct topics. First, we will discuss blockchain 

technology, and second, we will give an overview of machine learning basics and 

methods. After that, we will examine static, dynamic, and ML tools and their 

accuracy rates in vulnerability detection. Then we will develop a machine learning 

method for detecting vulnerabilities in blockchain technology (specifically Ethereum 

smart contracts) and compare its results to tools using different methods
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CHAPTER 2 

 

BACKGROUND 

Our research is based on two main pillars. In this section, we examine these two pillars 

and their subtopics in order to provide the necessary knowledge for understanding the 

subsequent sections of this paper. The first main subject is blockchain technology, and 

we also provide necessary knowledge on the subtopics of the Ethereum platform and 

smart contract basics. The second main topic in our research is machine learning, and 

we will provide information on the subtopics of machine learning such as deep 

learning, neural network models, and finally the ML model that we will use in this 

work, which is CNN. 

 

2.1. Blockchain Technology 

A blockchain is a distributed ledger that contains a record of all transactions since the 

beginning of its existence. (Alharby et al., 2017) Copies of this ledger are held by the 

participants in the blockchain network, known as nodes. This allows the transaction 

records on these ledgers to be verifiable with each other and ensures that all nodes 

can trust the authenticity and verifiability of these records. As a result, network 

participants do not need a trusted third party. This technology enables peer-to-peer 

money transactions by its users. (Halas, 2019) The shared ledger is divided into 

blocks in the blockchain. Blocks are chained together using cryptographic hash 

functions and are continuously added to the blockchain network. Each block contains 

the hash of the previous block, so that is allowing the blocks to be chained. 
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Figure 1: The Block Structure of Blockchain 

 

In Bitcoin, first block called genesis block created by Satoshi Nakamoto who founder 

of Bitcoin. (Nakamoto, 2008) After first block had created six blocks(approx.) have 

being continuously created in every hour. (Hammami, 2017)Block creation process 

called mining being caried out by miners and it works through consensus mechanism. 

Consensus mechanism is a validation mechanism which is used hinder to multiple 

spending a cryptocurrency and it makes tamper proof of a blockchain system. 

Consensus mechanism relies on Byzantine Fault Tolerance algorithm which states that 

as long as majority nodes are honest, a blockchain system can be secure against 

malicious attacks. (Zhang et al., 2019) Most popular consensus mechanisms are Proof 

of Work (PoW) and Proof of Stake (PoS). (Halas, 2019) 

While Proof of Work based on solving hash puzzles by dedicated CPU power of 

miners, Proof of Stake based on number of staked coins miners have in the system. 

(Investopedia) PoW based mining is time consuming and computationally expensive 

as well as its difficulty level is increasing after every 2.016 blocks are created. 

(Coindesk, n.d.) First blockchain system which is Bitcoin has been using PoW 

consensus algorithms.  
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First blockchain system Bitcoin tried to provide benefits on user below; 

1- Decentralization: Bitcoin ledger is distributed through nodes which means one 

need to send cash to others, does not need to trust third parties. 

2- Non-Reversible: After consensus is formed on last six blocks (apprx.1 hour 

pasts), it is no longer computationally feasible to reverse the transaction. 

3- Fault Tolerance: Since many nodes sharing the same ledger, even if some of 

them get downed, blockchain system would work seamlessly. Thus, bitcoin is 

resistant to SoF(Single Point Of Failure) 

4- Tamper proof: Bitcoin consensus algorithm PoW rely on Byzantine General 

Problem. If majority (%51) nodes are honest, system is safe against malicious 

attacks. 

5- Open source: Anyone can download bitcoin source code and bitcoin blocks 

from blockchain. Hence, Bitcoin working principle and backbone are 

transparent to public. (Nakamoto, 2008) 

After Bitcoin has gained popularity other blockchain systems has appeared. One of the 

most popular ones is Ethereum which is using Proof of Stake consensus algorithm 

today. 

 

2.1.1. Ethereum 

Ethereum is the second most popular blockchain system, introduced by Vitalik 

Buterin in 2014 and launched in 2015. (Ethereum,2022) Unlike the completely 

ownerless structure of Bitcoin, Ethereum is backed by the Ethereum Foundation, a 

non-profit organization that aims to support and develop the Ethereum blockchain 

network and ecosystem. (Ethereum Foundation,2022) Ethereum used Proof of Work 

(PoW) consensus algorithms until September 2022, after which it switched to Proof 

of Stake (PoS) with the ETH2.0 upgrade. In Ethereum's PoS system, nodes can 

become validators if they hold a specific amount of Ether in their accounts. This 

allows them to contribute to the Ethereum network and earn rewards. 
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(Ethereum ,2022) PoS does not require the CPU power or electricity consumption 

that PoW does, making it more energy-efficient and accessible to anyone without the 

need to buy and set up specialized hardware such as GPUs and ASICs. This makes it 

easier to achieve decentralization compared to the Bitcoin blockchain network 

structure. (Ethereum,2022) Ethereum also has an unlimited supply, unlike Bitcoin's 

hard-coded limit of 21 million BTC. This makes Ether slightly inflationary compared 

to Bitcoin. In addition to these differences, the main advantage of Ethereum over 

Bitcoin is that it is both a computing platform and an electronic cash system. 

Ethereum has the Solidity programming language, which is Turing complete and 

runs on the Ethereum Virtual Machine on the Ethereum blockchain network. 

(Arkangelo, 2019) Thanks to Solidity, not only can cash be transferred between 

parties, but data can also be transferred over the network. This feature has led the 

Ethereum development team to call it "The World Computer." (Arkangelo, 2019)  

 

2.1.2. Smart Contracts 

A Smart Contract is kind of a virtual contract that formed by compact-sized code that 

is loaded and running on blockchain network. It has two distinct feature which are 

terms or conditions and actions or results. When conditions are met, Smart Contract 

code is executed by automatically and give some results or actions predetermined. 

(Alharby et al., 2017) Smart Contract idea was first suggested by Nick Szabo in 1996. 

(Szabo, 1996) He mention about smart contract as “a set of promises, specified in 

digital form, including protocols within which the parties perform on these promises” 

Until Nakamoto introduce Bitcoin in 2009 it had not been getting attention much. 
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Figure 2: Smart contract system 

 

Smart contracts contain validation counter, account balance and data storage. Counter 

is integer value that serves to validate transaction, account balance is amount of Ether 

that contracts have a specific time and data storage is code information of Contract. 

When a transaction smart contract conditions are triggered by transfer or data which 

comes from blockchain network, bytecode executed through EVM (Ethereum Virtual 

Machine), and account balance of contract updates. Each running of smart contract 

code needs transaction payment in terms of Ether. (Alharby et al., 2017) This payment 

called as GAS , this GAS money goes to Miners in order motivate them to keep storage 

of Ethereum blockchains and maintain to the network. (King of the Ether, 2022 ) One 

key feature of smart contracts is that they cannot be altered or changed on their running 

principle once they uploaded on blockchain. Smart contract codes are open to public 

as blockchain transactions are, hence, anyone who wants to, download these codes to 

himself/herself own devices and examines them.  

Besides use cases of smart contracts mentioned above, there are new blockchain 

application areas has came after smart contracts started to be widely used. One of the 



  

 
8 

most important ones is Dapp (Decentralized Application). A Dapp is an application 

that code is written by Solidity executing on Ethereum blockchain network. Contrary 

to classic applications which are running on single server Daap’s do not have single 

point of failure since its backend holding through blockchain. (Margaritis, 2021) 

 

2.1.3. Smart Contract Vulnerabilities 

One important feature of Smart Contracts is that their code is open to the public, as 

mentioned in section 2.3. The open-source structure makes them easily exploitable. 

Since anyone can access and analyze the code, malicious individuals can discover bugs 

and software vulnerabilities in it. When these vulnerabilities are discovered, they can 

be exploited to take control of the Smart Contract or withdraw its account balance. 

Since Smart Contracts running on the blockchain network are non-modifiable and non-

reversible, their insecure code needs to be cleaned of bugs and insecure code structures 

before being uploaded to the network. (David et al., 2022) 

 

2.1.4. The DASP Top 10 Attacks 

DASP (Decentralized Application Security Project) is an initiative conducted by NCC 

Group which aiming to identify most impactful and frequently seen vulnerabilities. 

For this purpose they uncovered Top 10 smart contract vulnerabilities list in 2018. 

(Currencyrate.today, 2022) We are going to examine these vulnerabilities in order 

understand to their types and effect.  

 

2.1.4.1. Reentrancy 

Reentrancy is the most important vulnerability a smart contract may have. It is a bug 

that allow an external contract making multiple calls to itself over victim contract 

while other calls itself are continuing. (DASP,2022)  

One of the worst Smart Contract hacks in history was DAO hack. Definition of DAO 

is Decentralized Autonomous Organization. DAO is a running software which is 
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uploaded on blockchain, and it has owned by anyone. Participants have vote rights 

over decisions will be taken by proportion to the fund they invested on. (Szabo, 

1996) As is valid for all smart contracts a DAO as well is automatically executing 

once it runs. Hence if there is a vulnerability or a bug in its code. It is wide open to 

be attacked by malicious actors. In DAO hack it was happened. The DAO members 

could produce child DAO’s if they wanted to split from main code. Hacker(s) 

discovered bug known as infinite loop in DAOs’ code and they made recursive call 

to split function. (Hsieh, 2018) Consequently, they made to stole 3.6 million Ether 

which is $60 million dollar at the time was incident happened. It makes roughly $4.3 

billion dollar in today prices’. (Coindesk, 2016) 

 

 

 

Figure 30: Representation of Reentrancy Attack 
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Figure 4: Re-entrance bug showing in Solidity code 

 

2.1.4.2.  Access Control 

Access Control is not only Smart Contract vulnerability problem but also general cyber 

security issue which OWASP (Open Web Application Security Project) listed as Top 1 

Cyber Security Problem as of 2021. Access Control refers which user can reach to 

which data or specific partition of a software program. (David et al., 2022) Since, user 

may have different level of authorization such as regular user or admin, different types 

of users have different access rights to reach resources of a software potentially hold. 

If an attacker tries to gain more access right than he/she has, we can mention about an 

Access Control Attack. Through this way an attacker’ escalate of his privilege and his 

main aim is to capture resources more than he should.(Leander, 2022) In Smart 

Contract, if a user can capture ownership of contract by making call to this contract, 

he can withdraw all money contract holds. 

 

 

Figure 4: Broken Access Control on a Smart Contract 
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As it seen on Figure 4, msg sender is attended as contract owner. A malicious actor 

may get over control of this control because of this code failure. 

 

2.1.4.3. Arithmetic Issues 

Arithmetic vulnerabilities are a common type of vulnerability. They occur when an 

integer overflow or integer underflow happens. In Solidity, there is an 8-bit unsigned 

number that can hold a maximum of 256 integer values between 0 and 255. If the 

result of an operation is more than 255, an integer overflow occurs. On the other 

hand, if the result of an operation is less than 0, an integer underflow occurs. 

(Dingman et al., 2021) Since 255+1 results in 0 and 0-1 results in 255 in Solidity, 

overflows and underflows can cause the software to behave differently than intended. 

This can allow attackers to manipulate the smart contract to behave as they want. 

(Redfoxsec, 2022) 

 

 

Figure 5: Integer Underflow Vulnerability in Smart Contract 
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On line 9, the contract requires that the account balance of the caller (msg.sender) 

should be greater than the number of tokens they want to transfer (_value). Normally, 

if the account balance of the caller is 0 and they want to transfer 1 token, 0-1 results in 

-1. Thus, they cannot meet the condition on line 9, which states that the balance of the 

caller minus the number of tokens they want to transfer must be a positive integer. 

However, due to the integer underflow bug, 0-1 results in 255 in Solidity, and the 

condition on line 9 can be met.Dingman et al., 2021) As seen in the example above, 

arithmetic problems make Solidity contracts vulnerable to exploitation by malicious 

actors. 

 

2.1.4.4. Unchecked Return Values for Low Level Calls 

In Solidity, functions like address.call(), address.send(), and others are referred to as 

low-level functions, as they use the same opcode called "call()". (Wikipedia, 2022) 

This opcode is used to transfer funds from one contract to another. If call() fails, the 

function returns false. However, even if the return value is false, the contract's 

execution will not be reverted. This means that if a contract is executed without 

checking the return value, the contract's balance will be decreased even if the return 

value is false. 

 

 

Figure 6: Unchecked low level calls example 
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In the example above, there is a prize of 10 ETH being sent to a winner. The 

payedOut() function is set to true without waiting for the response of the contract 

being called. As a result, the sendPrize() function is executed and the balance is 

decreased, locking the prize money inside the contract irreversibly. However, even if 

the transaction fails and the winner.send() function returns false, the balance will still 

be decreased, as if the transfer process was completed successfully. (David et al., 

2022)  This vulnerability, known as unchecked return values for low-level calls, can 

be prevented by checking the return value of the send() opcode and throwing an 

exception if it is false. In other words, this vulnerability is a missing exception 

failure. 

 

2.1.4.5. Denial of Service 

Denial of Service Attack (DoS Attack) is making unavailable an information system 

such as server, network, or other machines for their users.(Raikwar et al., 2022) It is 

well known attack, and we face this on web frequently. An attacker overwhelms a 

website server or a service for a specific time frame such as one day or a week. Then, 

we apply necessarily mitigation technique such as writing on new firewall rules or 

blocking attackers Ip’s or some regions that attacks come from and through these 

arrangements we find solution eventually and we can take up service. On the other 

hand, we mentioned that Smart Contracts cannot be modifiable after they upload on 

blockchain on Section 2.3. Hence, when a Smart Contract is subject of DoS attack, it 

can be irreversibly lost its functionality. “Denial of service is deadly in the world of 

Ethereum: while other types of applications can eventually recover, smart contracts 

can be taken offline forever by just one of these attacks.” (Currencyrate.today, 2022) 

There are some known ways that is applied DoS attack to a Smart Contract. Most 

important three ones are; First, asking result of computationally time taken operation 

by calling another smart contract in order make to unavailable it. Second, making out 

of gas it by asking multiple refund to multiple addresses. Third, cancelling refund by 

using fallback function of Smart Contract. (Samreen et al., 2020)  
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Sometimes, smart contracts developers put suicide() or selfdestruct() function code 

inside of smart contract so that they can alter it if malicious activities happens on 

there. However, if ownership of contract is not asked by smart contract in solid way, 

malicious actors can trigger this functionality of contract and terminate Smart 

Contract. (Eskandari et al., 2019) 

 

 

Figure 7: Suicide() function example 

 

 

Figure 8: Selfdestruct() function example 

 

As it can be seen on Figure 7 and Figure 8, Smart Contract kill functions which are 

suicide() and selfdestruct() are not questioning ownership of the contract. Hence, 

malicious actors can trigger this function by making call to the contract by another 

contract that they may use. It can be results with killing this contract. 

 

 

Figure 9: Loophole Vulnerability for DoS Attack 
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In example of Figure 9 we see send() opcode in a for loop. If this transaction fails, for 

loop locks and it makes smart contract unavailable. This code flaw can be used for 

applying DDoS attack for malicious actors. 

 

2.1.4.6.  Bad Randomness 

Bad randomness becomes a vulnerability when a smart contract uses a random 

generator to produce a number for giving prize money or making a transaction to a 

winner in a game. Since smart contract codes are open to the public, anyone can see 

the method of generating pseudo-random numbers. When an attacker figures out the 

next result of the random generator, they can manipulate the smart contract and take 

money from it through this method. (David et al., 2022) 

 

 

Figure 10: Bad random generator in a Smart Contract 

 

In Figure 10, if random generator of block.blockhash() is using current block number 

or number of before than 256 block it will be safe as randomness. However, if it uses 

previous block number for instance, an attacker contract can find previous block’s 

number and can calculate its hash eventually he/she can find random number 

generator’s result. Attacker can gain advantage over this result by winning a lottery 

for instance. 
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In order hinder to this vulnerability, random number should come from outsources (i.e. 

A web server) to the smart contract, mechanism underlying of random generator can 

be hidden thanks to this way. (David et al., 2022) 

 

2.1.4.7. Front Running 

Ethereum miners take Ether, which is called Gas, as a fee in return for their efforts in 

running codes on the Ethereum Blockchain Network. Therefore, users who transfer 

cash or send code to smart contracts can determine the fee price for their own payload. 

They do this so that their code will be run on the network before others' code. 

Naturally, miners are more eager to process codes that have higher fees. This is called 

a gas auction. (Alharby et al., 2017) Transactions and their payloads on the Ethereum 

blockchain network can be seen by everyone. If a code output is valuable information, 

a malicious actor can replicate the code and upload it onto the network as if it were his 

own code, with a higher gas fee. As mentioned above, codes that promise higher Gas 

fees are processed before others’ code. In our example, the attacker's replicated code 

will be run by miners before the copied code, allowing the attacker to receive the 

reward of the code output. 

 

Figure 11: A Front runner Attack representation on Ethereum Network. 
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In example above, Front-runner attacker steal user’s code from network and he/she 

upload to the network back with promising higher fee. Consequently, attacker gets 

prize money of code output which is 1000 ETH. 

 

2.1.4.8. Time Manipulation 

In blockchain network, blocks have timestamp indicates the time when a block is 

mined. A block timestamp is determined by the local time zone of the miner who 

mined the block. However, miners have elasticity of about 15 minutes to declare when 

they mined a block. (SecureWorld, 2022) When a smart contract uses opcode such as 

timestamp.block(), now() or similar ones that is pointing to timestamp of a block in 

order select to sending money to another address, timestamp vulnerability occurs. This 

vulnerability can be exploited by dishonest miners.  

 

 

Figure 12: Timestamp dependence example in a Smart Contract 
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In example above, a smart contract determines winner of Roulette game according to  

timestamp of block which players send ether. When a players’ transaction block time 

(now) modulo 15 equals to 0, that player wins the game and gets all money on the 

contract. The vulnerability of this code is that a miner can determines timestamp a 

block 900 second forward or backward from right now. Hence, he/she can arrange 

timestamp of block he mines equals 0 when it is divided by 15. So that he can win 

the game and withdraw all money on Smart Contract. (Chen et al., 2019)  

 

2.1.4.9. Short Address Attack 

Short Address attack is based on explosion of an EVM (Ethereum Virtual Machine) 

vulnerability. EVM expects 32 byte long character as transferring address [38] When 

the address is not given as 32 byte, EVM automatically adds padding as zero (0) in 

order make to the address suitable its format. However, EVM is not checking that if 

address is valid or not. Thus, a malicious actor can generate special address when is 

padded turn into explosion. In example below, transfer function accepts any address 

as a valid address. 

 

Figure 13: Example of Short Address Attack 

 

A transfer normally occurs two parts. First one is address part which is assuming 

32byte and second one is amount part which is 32 bytes also. Since, address part and 

tokens that transferring encodes together, it can be manipulated if address parts’ one 

zero will be deleted.  
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We assume that Alices’ address is  

(0xdeaddeaddeaddeaddeaddeaddeaddeaddeaddead) 

Alice wants to withdraw her 100 tokens from an exchange web site to her address as 

stated above. Here is below a normal non -tricky transfer. 

 

 

Figure 14: Non tricky transfer 

 

In line 1, first part which is until zeros start is trigger transfer function. Right part 

contains both address and transfer amount together. When its decoded, line 2 and line 

3 is extracted. Hence, line 2 represents address and line 3 represents transfer amount 

which is 100 Ether in this example. 

 

 

Figure 15: Showing that when one zero is deleted 

 

Since, address part and transfer amount part are encoded and decoded together. When 

is deleted one zero from the address part, EVM is applying padding on transferring 

amount part instead of address part. Thus, when one zero is deleted, EVM adds two 

zero to amount part and this value makes 25600 ethers instead of 100 ethers, since its 

multiplied with 256. As a result, while manipulating address value, a malicious actor 
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can withdraw way more money that he shows to smart contract. (Ethereum Book, 2022) 

One simple and effective way hinder to this vulnerability is that checking address 

longevity if it is 32 bytes long or not before accepting it as a valid address. 

 

2.1.4.10.  Calls to the Unknown Vulnerability 

Smart Contracts are not only called by another user for transferring his/her funds, but 

they can also call other smart contracts’, or they can called by other smart contracts. 

The problem is about that, malicious actors can write malicious smart contracts. A 

honest smart contract codes can be triggered in malicious way. For instance, when a 

contract runs delegatecall() to call other smart contract, second contract code gets 

run. Malicious contract can repeat this process many times and it can lock vulnerable 

contract code by it gets running repeatedly. (Eskandari et al., 2019) 

 

   

Figure 16: Calls to the Unknown Vulnerability  

 

 

Figure 17: Calls to the Unknown Vulnerability Example 2 

 

On above, delegetacall() function runs on initialize function of contract. Thus, 

malicious contract can get control of vulnerable contract through this way. 
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2.2. Machine Learning 

Machine learning is the study of computer science that enables computers to learn 

automatically from data through experience. (Mitchell, 1997) Machine learning 

algorithms build a model by extracting information from training data, which is given 

to them. Machine learning approaches are divided into two categories: supervised 

learning and unsupervised learning. (IBM, 2022) While supervised learning works with 

labeled data, unsupervised learning finds its own labels. Supervised learning is the 

method of training a machine learning algorithm through example inputs and their 

corresponding labels. The goal of the algorithm is to increase the accuracy of labeling 

input data as much as possible. The more training data the algorithm is provided, the 

better the results of the model. (Liu et al., 2012) According to their tasks and output 

variables, supervised learning algorithms are divided into two subsets: classification 

and regression. The output variables of classification tasks should be categorized, such 

as the brand of a car, the color of a pencil, or the marriage status of a person. The 

output should be limited to a set of values. On the other hand, the output of regression 

tasks must be a continuous variable, such as the degree of air temperature, the price of 

a bicycle, or the height of a person. In essence, supervised learning algorithms are used 

to detect relationships and differences of degree between two objects. (Apaydin et al., 

2020) On the other hand, in unsupervised learning, input data is unlabeled and given 

to an algorithm, which then builds patterns and discovers relationships within the data. 

There are two main types of unsupervised learning tasks: clustering and association. 

Association tasks focus on discovering patterns and rules related to the input data, such 

as predicting political tendencies of people. Clustering tasks, on the other hand, 

involve grouping data based on specific features, like grouping similar customer 

profiles. [46] 

 

2.2.1. Human Neural Networks and Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational models inspired by the 

structure and function of the human nervous system. In the human neural system, 

cells called soma serve as the basic unit of information processing. These units 

receive input through their dendrites, process it, and send the processed information 
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to other cells through axons. (Mehtab et al.2017) Similarly, in ANNs, neurons are 

connected to each other in a network structure. The units in ANNs are called neurons 

or nodes. Each node has input connections, called dendrites, and output connections, 

called axons, to connect with adjacent nodes. These connections are used to transmit 

information between neurons in the network. The architecture of the ANN and the 

way the neurons are connected to each other determines the capabilities and 

performance of the network. ANNs have been successful in a wide range of 

applications including image recognition, natural language processing, and decision-

making. 

 

 

Figure 18: A Biological Neuron 

 



  

 
23 

 

Figure 19: An Artificial Neuron 

 

Inputs received by an Artificial Neural Network (ANN) have specific weights, which 

can be either positive or negative. Positive values activate a node, while negative 

values inhibit it. The neuron sums the received values of signals by multiplying them 

by their weight. The output of the summing process is passed through a transfer 

function, typically a logistic function, to be processed, and the final output is sent to 

other neurons. (Laakso, 2022)A back-propagation function was developed for the ANN 

structure. The aim of the back-propagation algorithm is to minimize error in a feed-

forward neural network. The back-propagation algorithm takes the output value from 

the network's output layer and feeds it back to the network's input layer to decrease the 

error rate from the previous process. In each iteration, the weights of connections are 

determined again until the output error rate is acceptable. (Buscema, 1998) In a classic 

ANN, there are three layers formed by groups of neurons: the input layer, the hidden 

layer, and the output layer. This earliest form of ANN model is sufficient for most 

calculations, such as predicting house prices or classifying objects. 
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Figure 20: Simple form of ANN 

 

2.2.2. Deep Learning and Deep Neural Networks 

Deep learning is a subset of machine learning in artificial intelligence (AI) that is 

capable of unsupervised learning using multiple layers of artificial neural units on 

unlabeled data. Deep learning algorithms have shown success in a variety of tasks, 

including image and speech recognition, natural language processing, and predictive 

modeling (Bengio, 2015) These algorithms are able to extract complex features and 

patterns from data automatically through a neural network. When confronted with 

the need to learn a complex model, process thousands of values, or make future 

predictions in a time series, a simple form of artificial neural network (ANN) may 

become incapable. In such cases, a deep neural network (DNN) can be used to 

address these complex problems. Essentially an advanced form of ANN, a DNN is 

developed in its "deep" structure, consists of multiple hidden layers (ranging from 

two to hundreds) of artificial neural units. The additional layers and connections in a 

DNN enable it to process and learn from more complex data than a single-hidden-

layer ANN. Research has shown that DNNs can outperform other machine learning 

methods in certain tasks, such as image classification (Krizhevsky et al., 2012) 
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However, the training of DNNs can be computationally intensive and requires large 

amounts of labeled data, as well as require good optimization of hyperparameters. 

(Bengio et al., 2007) Because of these challenges, the use of DNNs in various fields, 

including computer vision, natural language processing etc. are expected to grow in 

future. 

 

 

Figure 21: Deep Neuron Network 

 

2.2.3. Convolutional Neural Networks 

Convolutional neural networks (CNN) is a type of RNN in artificial neural network 

that are particularly well suited for image classification and recognition tasks. (LeCun 

et al., 1998) CNN occurs of multiple artificial neurons layers and it uses 

backpropagation algorithm. One key feature of CNN is its usage of convolutional 

layers, which apply a convolution operation to the input data. Convolutional layers 
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extracts features of input data and it builds up a pattern which contains hierarchical 

representation of it. (Goodfellow et al., 2016) This method provide CNN to 

automatically learn and extract important features from the input data, hence, it does 

not requires to get manually label to input data. (Bengio et al., 2013) 

Another feature of CNN need to be emphasized is that its use of pooling layers. İnput 

data turn into feature maps after it processed by convolutional layers. Then, this 

feature maps goes through pooling layers. These special layers gets high dimension 

of given input then it reduces dimensionality of the data. Thanks to this way, pooling 

layers provide increasing the robustness of the model and prevent from deformations 

in the input data (LeCun et al., 1998) CNNs have been successful in a wide range of 

image recognition and classification tasks. (Krizhevsky et al., 2012) CNN have also 

been applied to other domains such as natural language processing and speech 

recognition (Collobert et al., 2011) In this work, we will implement a CNN model to 

analyzing vulnerabilities on the smart contract code. We decide to choose a CNN 

model due to its success on NLP (Natural Language Processing) tasks. Details of our 

method will be explained in next chapters. 

 

 

 

Figure 22: Representation of Convolutional Neural Network 
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2.2.4. Graph Neural Networks 

Graph neural networks (GNN) are a type of neural network model designed to 

process on graph structured data (Bruna et al., 2014) GNN model is capable of 

processing of the complex dependencies between nodes and edges in a graph, and 

have been successful in a variety of tasks, including node classification and graph 

generation (Kipf and Welling, 2017) There are different types of GNN, including 

convolutional GNN, recurrent GNN, and attention-based GNN (Wu et al., 2019) 

Convolutional GNNs are inspired by convolutional neural networks (CNN) and use a 

“localized neighborhood aggregation scheme” to learn graph level representations. 

(Kipf and Welling, 2017) On the other hand, Recurrent GNNs are inspired by 

recurrent neural networks (RNN) and use a sequential data passing scheme to update 

the node representations. (Li et al., 2016) Attention-based GNNs use self-attention 

mechanisms to weight the importance of different nodes and edges in the graph. 

(Velickovic et al., 2018)One of the most difficulties in training GNN is the efficient 

computation of the graph convolutions. Since graph convolutions require the 

summation of the all features which belong neighbor nodes, its cost very expensive 

regarding with computation power. To solve this issue, researchers develop some 

methodologies, such as sampling-based and spectral methods. (Chen et al., 2018) 

GNN has achieved high accuracy results on a wide range of tasks. Hence, it has been 

used in medicine, social media analysis, fraud analysis, anomaly detection (Wang et 

al., 2019)  
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Figure 23 : Graph Neural Network Representation 
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                                            CHAPTER 3 

RELATED WORK 

Both dishonest smart contract developers and external malicious actors try to find 

vulnerable code parts in Solidity to exploit them for their own benefit. To detect these 

bugs, many initiatives and independent researchers have developed a large amount of 

automatically executed tools. The methods these tools use for detecting vulnerabilities 

are different from each other. Some of them try to find predefined code snippets on 

smart contracts' source code (Static Vulnerability Tools) while others look into 

executing results and search for vulnerabilities based on scenarios (Dynamic 

Vulnerability Detection Tools). These two methods use traditional techniques to find 

vulnerabilities in smart contract codes. On the other hand, thanks to improving 

Machine Learning techniques, some tools that use Deep Learning and Artificial Neural 

Networks are beginning to be used for finding vulnerabilities in smart contracts. We 

will examine all three methods and their advantages and disadvantages over each other. 

 

3.1. Static Vulnerability Detection Tools 

Static analysis of software code is a well-known technique applied to software 

programs. It involves searching for bug-prone code snippets or vulnerable code 

structures within the code. There are many tools available for static analysis of smart 

contract code, such as Securify, Slither, Smartcheck, and Oyente. 

Securify: It is a static analysis tool supported by the Ethereum Foundation. It checks 

the dependency graph of the code and extracts semantic code snippets from the smart 

contract's source code, searching for vulnerable patterns. It runs automatically and 

does not require expert skills to use. (Securify, 2022) 
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Slither: Slither is a vulnerability analysis framework that includes data flow and taint 

tracking to detect buggy code in smart contracts. It uses a framework called Static 

Single Assessment form to reduce high-level Solidity code to an instruction set, 

while preserving the semantic information of the code. (Feist et al., 2022) (Slither, 

2022) 

Oyente: Oyente differs from other static analysis tools in its approach. It uses 

symbolic execution to extract the control flows of the code, focusing on the 

execution paths of the software rather than the input data. This allows it to predict 

how the code will behave when it is run. Oyente can work with bytecode and can 

detect reentrancy, callstack depth, and integer overflow vulnerabilities. (Oyente, 

2022) (Lutz, 2020)  

Smart Check: Smart Check is another popular analysis tool developed for smart 

contract vulnerability analysis. It extracts the Abstract Syntax Tree (AST) of the 

contract code and analyzes the semantic features of the code, using XML to save 

these structures. It then checks for denial of service (DoS) vulnerabilities, reentrancy 

vulnerabilities, and timestamp dependencies in the code using XML Path Language 

(XPath). (SmartCheck, 2018) (Huang et al., 2022) (XPath, 2022)  

Mythrill is one of the most advanced smart contract vulnerability scanning tools 

available. In addition to analyzing human-readable Solidity code or bytecode like 

other tools, it can also analyze the intermediate representation (IR) of the code. It can 

detect various vulnerabilities, including those related to gas consumption and the 

handling of external calls. Mythrill uses control flow graph execution engine which 

named as LASER by its producer firm. It executes Symbolic analyze on extracted 

control flow graph to find bugs. Since, it can find most of the DASP10 vulnerability 

types such as Integer Overflow/Underflow, Reentrancy Vulnerability, Unchecked 

Call Return, Denial of Service Vulnerability, Arithmetic Issues etc. its coverage rate 

is more than other static analyze tools (Jaggi, 2020) Mythrills’ output is in JSON file 

extension. Hence, it is not practical for developers to validate its results. One who 

wants to check Mythrill results need to use JSON parser which needs extra effort as 

well as expert contribution requires for using it. (Jaggi, 2020) (Aryal, 2022) 
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3.2. Dynamic Vulnerability Detection Tools 

Dynamic vulnerability detection tools differ from static ones in their working 

principle. While static tools scan software when it is not running, dynamic tools scan 

it during execution. As detecting every malicious code structure is a difficult task, 

static analysis cannot catch all vulnerabilities in the code. On the other hand, analysis 

tools that use dynamic methods can check the actual output of a code structure and 

determine if it is acting in a malicious way. However, dynamic analysis can be more 

expensive. (Cervantes et al., 2007) 

Manticore: Manticore is an open-source analysis tool that can perform symbolic 

execution on smart contracts. It uses external solvers such as Yices, Z3, and CVC4 to 

symbolically trace code paths on the smart contract and the Manticore core engine 

can scan for bugs in these code snippets. (Cervantes et al., 2007) (Manticore, 2022) 

Manticore can analyze both smart contract EVM bytecodes and Linux binaries. (Lutz, 

2020) It can detect reentrancy vulnerabilities, timestamp dependencies, external call 

to sender vulnerabilities, among others. However, its analysis can be time-

consuming. (Aryal, 2022) 

Maian: It aims to find greedy, prodigal, or suicidal contracts by scanning a set of smart 

contracts. More specifically, it looks for contracts that can be locked by malicious 

actors, contracts that provide a possibility for malicious actors to steal their funds, or 

contracts that can be terminated by malicious actors. (Maian, 2018) Maian uses two 

different methods for this: symbolic analysis and concrete validation to detect bugs. 

Concrete analysis involves executing a smart contract on a fork of the Ethereum 

blockchain, allowing Maian to trace a smart contract's behavior in its real environment. 

Maian can work with bytecode instead of Ethereum source code. (Ivicanikolicsg, 2022) 

teEther: It is developed by researchers at Saarland University and focuses on codes 

that can transfer funds to another address. (Norta et al. 2023) It works at a low level 

(with bytecode). If the bytecode of a contract is not available, teEther can translate 

Solidity code into bytecode using its dissembly support. After extracting the 

bytecode, teEther uses an SMT solver to run the bytecode on a private blockchain 

created for testing smart contracts in a controlled and safe environment. One 

drawback of teEther is that it requires expert knowledge to be used, as it does not 
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have a frontend. A developer or analyst must load the smart contract into the Python 

environment to analyze it with teEther's code. (Krupp & Rossow, 2018) (Nescio007, 

2018)  

MythX: It is a security analysis platform for Ethereum smart contracts developed by 

the team at ChainSecurity. It provides a suite of tools for analyzing and testing smart 

contracts for vulnerabilities and other security issues, including static analysis, 

dynamic analysis, symbolic execution, a debugger, and a testing framework. (MythX, 

2022) 

 

3.3. Vulnerability Detection Tools Using Deep Learning 

Although both Static Vulnerability Detection Tools and Dynamic Detection Tools 

give accurate results mostly on detection vulnerable code parts and bugs on Smart 

Contracts, these tools rely on predefined models. In other words, they simply 

scanning Smart Contracts if they have any predefined malicious code structure or 

not. That work in most of the scenarios however, since these scanners are trying to 

find predefined codes they cannot catch similarity of a code snippet may have. A 

vulnerable code can hide from static and dynamic scanners since it has not identified 

onto scanner before. Power of Machine Learning has came to the fore on this point. 

Since Machine Learning algorithms are extracting model their self in regarding with 

labeled data, they can find hidden vulnerabilities in higher percentage of accuracy 

compare with other methods. (Huang et al., 2022) There are bunch of tools which are 

using different machine learning techniques out there, however we examined widely 

used and well-known ones. 

SCSCAN: It was developed by Xiaohan Hao et al. It uses support vector machines 

(SVMs) to detect vulnerabilities, including reentrancy, DoS attacks, and access control 

vulnerabilities. The developers claim that SCSCAN has a success rate of over 90% for 

identifying these vulnerabilities. (Hao & Ren, 2020) 

BGNN4VD: It was introduced by Sicong Gao et al. It uses bidirectional graph neural 

networks to detect a variety of vulnerabilities in Solidity code, including integer 

overflows/underflows, reentrancy, and callstack attacks. BGNN4VD achieved an 
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average precision of 87.8% and an average recall of 81.5% on a dataset of vulnerable 

and non-vulnerable contracts. (Cao et al., 2021) (Li & Zou, 2018) 

VulDeePecker: VulDeePecker introduced by Zhen Li et al., uses bidirectional long-

short term memory to detect vulnerabilities. It has been evaluated on a dataset of 

real-world Ethereum smart contracts and has demonstrated good performance in 

terms of precision and recall. (Yu et al., 2021)  

DeeSCVHunter: DeeSCVHunter  developed by Yu X et al., uses a technique called 

vulnerability candidate slicing (VCS) to improve the accuracy of its deep learning 

model. This model can only detect reentrancy and timestamp vulnerabilities. [88] 

CBGRU: CBGRU is a hybrid model that combines a word embedding model and a 

convolutional neural network (CNN). (Goswami et al., 2021)  

BLTM-ATT: BLTM-ATT introduced by Qian P. et al., combines bidirectional long-

short term memory with an attention mechanism to scan for vulnerable contracts. 

TokenCheck: TokenCheck introduced by Goswami S et al., uses long short term 

memory for smart contract code analysis. (Zeng et al., 2022) 

EtherGIS: EtherGIS, developed by Zeng et al., uses a graph neural network (GNN) to 

detect vulnerabilities. It extracts graph features from the control flow graph (CFG) and 

then applies GNN to these features after converting them into vectors. (Ashizawa & 

Yanai, 2021)  

Eth2Vec, Eth2Vec developed by Ashizawa et al., uses natural language processing 

(NLP) to extract semantic features of smart contract code, which are then used in a 

graph neural network to detect vulnerable smart contracts. (Hacken.io, 2022) 
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CHAPTER 4 

METHODOLOGY 

Smart contracts have many vulnerabilities, which have resulted in significant 

economic losses and a loss of public confidence in the blockchain system as a whole. 

These vulnerabilities can occur due to inexperienced developers or malicious actors. 

There is a wide range of vulnerability types, and foundations such as DASP have 

attempted to detect and classify them. DASP has created a top 10 list of the most 

impactful vulnerabilities, and according to this list, reentrancy vulnerabilities are the 

most common and harmful type of smart contract vulnerability. They have directly 

caused losses of almost $200 million dollars. (Mohd. Ishrat et al., 2012) Given the 

significance of this issue, we have decided to develop an analysis tool that focuses on 

finding reentrancy vulnerabilities in smart contracts. 

In chapter 4, we discussed the tools and methodologies used for detecting 

vulnerabilities in smart contracts. While static analysis tools are widely used by smart 

contract developers and the cyber security community, they can struggle to detect rare 

and malicious code patterns because they can only detect code snippets that exist in 

their database. Dynamic analysis tools also have limitations, as they can only find 

vulnerabilities when they execute the smart contract program. It is not always possible 

to know how the smart contract will behave in different execution scenarios. (Wang & 

Xu, 2020) Research has shown that the most promising results, with accuracy rates 

above 90%, can be obtained by using machine learning in vulnerability detection tools. 

In recent years, many such tools based on ML algorithms have been developed by 

researchers for software vulnerability scanning. However, some of these tools suffer 

from issues such as using the wrong methods, such as working with bytecodes that 

result in bytecode loss during the extraction phase, or not being well-configured, such 

as using incorrect or missing hyperparameters.  
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On the other hand, tools that use state-of-the-art deep learning models, such as graph 

neural networks, can be require a high level of knowledge in the field of machine 

learning. In addition, GNN models may not be suitable for balancing ease of use with 

good results, as they often produce results similar to those of other deep learning tools. 

Therefore, their acceptance among smart contract developers may be limited. 

Considering features that are both compactness and produce good results, we introduce 

our Four Layer CNN (Convolutional Neural Network) Model for the task of detecting 

reentrancy vulnerabilities in smart contracts. Our model works on extracted code 

snippets provided by the Word2Vec model. It takes the extracted features as input and 

uses four layers to analyze these features according to their labels. Below, we will 

provide more detail and describe the phases of our work. 

 

4.1. Data Acquisition 

Deep learning models need to be trained with labeled data before they can be used. 

The data must be accurately labeled in order to use our model. There are works [95] 

(Liu et al., 2023) (Saastamoinen, 2020) that use training data labeled by other 

analysis tools, such as Oyente and Smartbugs. However, these approaches are flawed 

at their root. If these analysis tools were reliable 100% of the time, there would be no 

need to develop deep learning models for vulnerability analysis of smart contracts. 

Therefore, the labeling process needs to be done by hand or under human 

supervision. We used a labeled dataset created by another researcher (Zhuang et al., 

2020) The original reentrancy dataset has 273 smart contract examples that are 

labeled as 0 or 1 based on their reentrancy vulnerability status. We picked 200 

labeled smart contracts. While, 64 of these contracts which are labeled as “1”, have 

reentrancy vulnerability, 136 of them which are labeled as “0” are not vulnerable . 

We divided our dataset into 80% for training and 20% for testing as it is 160 number 

of contracts for training and 40 number of contracts for test. 

4.2. Implementing of Word2Vec  

Word2Vec is a popular word embedding model that uses machine learning to provide 

natural language processing. Its principle of operation involves representing words as 
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vectors in space based on their meanings in sentences. "The idea is that these word 

embeddings contain information derived from the contexts of each target word, i.e., 

from the words frequently occurring near each target word, and are therefore more 

informative than the plain words by themselves." (Hao & Ren, 2020) 

 

 

Figure 24: Implementing of word2vec model on python language 

 

We use the Word2Vec model to extract code snippets from smart contract source codes 

and represent these snippets as vectors in a graph. This method allows us to build a 

model that takes into account the relationships between code parts, enabling us to 

identify vulnerable code parts using our CNN model. 
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Figure 25: Code snippets’ vector extracted by out Word2Vec Model 

 

As mentioned above, the Word2Vec model represents code snippets based on their co-

occurrence frequency. This method will provide semantic meaning for the code parts 

to our deep learning model in the subsequent stages of our work. 
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4.3. Creating CNN Model 

We examined a large number of research to find the best model for our purpose. There 

are works that use RNN, LSTM, GRU, etc. We chose to work with a Convolutional 

Neural Network because research shows that it gives better results than LSTM (Hao & 

Ren, 2020) and is more practical to implement compared to GNN (Zhuang et al., 2020) 

 

 

Figure 26: CNN Model Code in Python 

 

Our CNN model consists of four layers with 128, 64, 32, and 16 neurons, respectively. 

We use "ReLu" as the activation function for the hidden layers and sigmoid for the 

output (dense) layer. Additionally, we use a 0.3 dropout for each epoch. After 

experimenting with various values, we decided to use a batch size of 30 and 

determined 150 as epoch size to achieve the best results. 
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CHAPTER 5 

EVALUATION 

We trained and test our model as we mention above in detail and we got promising 

results which are better than many analyzing tools. 

 

  

Figure 27: ROC Curve of Results 
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-  Figure 28: Model loss of Results 

 

 

Table 1: Result Values of Our Model 

 
Precision Recall F1 Score Support 

0 1.00 0.93 0.97 30 

1 0.83 1.00 0.91 10 

Accuracy 
  

0.95 40 

Macro Avg 0.92 0.97 0.94 40 

Weighted Avg 0.96 0.95 0.95 40 

F1 Score 
  

 0.90 

Recall Score 
   

1.0 

Precision Score 
   

0.83 

Accuracy Score 
   

0.95 
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Figure 29: Demonstration of Result Values on Table 2 

 

5.1. Comparison Results with Other Tools 

We compared result of our model and some analyze tools that we select. 

 

 

Table 2: Comparison with other Tools 

Tools Accuracy(%) Recall(%) Precision(%) F1(%) Acc(%) 

Smartcheck 52.9 32.08 25.00 28,00 44.32 

Oyente 61.62 54.71 38.16 44.96 59.45 

Mythrill 60.54 71.69 39.58 51.02 61.08 

Securify 71.89 56.60 50.85 53.57 - 

DR-GCN 81.47 80.89 72.36 76.39 - 

Our Model 95 1.0 83.33 90.90 - 
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CHAPTER 5 

CONCLUSION 

Since blockchain ecosystem is economically growing day by day, people who do not know 

much thing about blockchain and its working principle, put their big amount of money with 

hoping of making profit. However, both malicious smart contract developers and external 

attackers exploit smart contracts’ software by using Solidity vulnerabilities. Even though, 

there are some initiatives that audit bugs on smart contracts and warn people against 

smart contracts’ vulnerabilities, there is no widely used, accepted by public and at the same 

time effective and easy to use smart contract vulnerability solution.  

In this context, our proposed method using CNN (Convolutional Neural Network) for smart 

contract vulnerability detection offers a promising solution. By leveraging the power of 

machine learning, CNNs can accurately and efficiently identify reentrancy vulnerability 

which is most seen and impactful one in Solidity contracts. Our results demonstrate the 

effectiveness of this approach, with an average precision and accuracy of 0.83% and 0.95%, 

respectively. Additionally, CNN-based approaches have the potential to scale and adapt to 

new types of vulnerabilities as they emerge, making them a valuable tool for ensuring the 

security and reliability of smart contracts in the long term. 

Overall, our research demonstrates the potential of convolutional neural networks as a 

valuable tool for detecting vulnerabilities in smart contracts. While more research is 

needed to fully realize the potential of this approach, we believe that CNNs offer a 

promising solution for improving the security and reliability of smart contracts in the rapidly 

growing blockchain ecosystem. 
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